
Extended Password Key Exchange Protocols
Immune to Dictionary Attack *

David P. Jablon
Integrity Sciences, Inc.

http://world.std.com/~dpj/

Abstract

Strong password methods verify even small passwords
over a network without additional stored keys or
certificates with the user, and without fear of network
dictionary attack. We describe a new extension to further
limit exposure to theft of a stored password-verifier, and
apply it to several protocols including the Simple
Password Exponential Key Exchange (SPEKE). Alice
proves knowledge of a password C to Bob, who has a
stored verifier S, where S=gC mod p. They perform a
SPEKE exchange based on the shared secret S to derive
ephemeral shared key K1. Bob chooses a random X and
sends gX mod p. Alice computes K2=gXC mod p, and
proves knowledge of {K1,K2}. Bob verifies this result to
confirm that Alice knows C. Implementation issues are
summarized, showing the potential for improved
performance over Bellovin & Merritt's comparably
strong Augmented-Encrypted Key Exchange. These
methods make the password a strong independent factor
in authentication, and are suitable for both Internet and
intranet use.

1. Introduction

In our enlightened age of public-key cryptography,
passwords are still used everywhere, and people still can't
remember passwords large enough to use as ordinary
encryption keys. Dictionary attacks against many
methods, including Kerberos [BM89], are often taken for
granted, and the concept of "good" and "bad" passwords
is part of computer security folklore. What is often
overlooked is that the quality of a password is largely
determined by strength of the verification method. A
bank teller machine uses a 4-digit password in a strong
way. Since the early 1990's, the discovery of strong
methods permits easily-memorized passwords to be
verified over an insecure network, without using
additional keys, and without fear of network dictionary
attack.

We describe new and modified protocols in this class,
that verify a potentially low-entropy shared secret, and
protect it as much as possible; The secret is not revealed

to anyone who doesn't already have it. Our goal is also to
gracefully handle passwords of large-entropy too. When
considering theft of a host-stored hashed-password
database, large passwords still provide more security than
small, but strong methods don't fall to network attack
when password entropy is less than optimal.

Known methods that presume both parties share the
same secret include:

• EKE -- Encrypted Key Exchange [BM92]
• The "secret public key" methods [GLNS93]
• SPEKE -- Simple Password Exponential Key

Exchange [Jab96], and
• OKE -- Open Key Exchange [Luc97].

Use of a one-way hashed password on both sides
prevents the need for clear-text passwords on the host.
But a thief who steals the hashed password from the host
can use it to masquerade as the user in the protocol. One
solution to this problem is the Augmented Encrypted Key
Exchange (A-EKE) described in [BM93]. In this method
the host's verifier is a one-way function of the password,
which is used to verify a proof that the user knows the
password, and a thief cannot use the verifier directly to
masquerade as the user in the protocol. We describe a
new alternative to this method.

The limitation of all such extended methods is that a
stolen verifier permits brute-force attack. The severity of
this depends on the quality of the password relative to the
resources and ingenuity of the thief. We conservatively
assume that a brute-force attack on the verifier will reveal
the password, and assume that a "best effort" is made to
keep the host's verifier database secret. We also note that
the requirement for secret host data is generally required
for all mutual authentication techniques. Our goal
remains simple: Provide the strongest security possible
for both small and large passwords.

In § 2 we review EKE and SPEKE, two previously
published methods for shared-key authentication, and the
A-EKE extended method. In § 3 we describe a new “B”
extension that replaces the “A” in A-EKE, and show
several new combinations for extended methods. Security
analysis and constraints are discussed in § 4,

* Proceedings of the Sixth Workshops on Enabling Technologies: Infrastructure for Collaborative Engineering (WET-
ICE '97 Enterprise Security), IEEE Computer Society, Cambridge, MA, June 18, 1997, pp. 248-255.
0-8186-7967-0/97 $10.00  1997, IEEE

implementation and performance issues in § 5, and
further thoughts on benefits and limitations of these
methods are in § 6.

2. Review of SPEKE, DH-EKE, and A-EKE

We review three shared-secret protocols. In SPEKE
and DH-EKE, both parties share a common secret as the
basis for authentication, with the distinctive feature that
eavesdropper dictionary attack on a small secret is
prevented. A-EKE extends DH-EKE to reduce the
vulnerability to theft of a host's stored verifier.

In both SPEKE and DH-EKE, two parties, Alice and
Bob share knowledge of a secret value S, where S
represents a password, or an agreed-upon one-way
function of the password. They perform a modified
Diffie-Hellman [HDM77] exchange (DH) to agree on a
large key K, and then (at least) one party sends P(K), a
proof of knowledge of K, to the other. We use knowledge
of K to imply knowledge of S. The difference between
these protocols is in how the exchange is modified to
incorporate S.

2.1. SPEKE

In SPEKE, prior to the protocol exchange, Alice and
Bob agree to use the shared secret S to determine the
parameters for the DH protocol. A simple example uses
Zp

*, with prime p, where p = 2q+1 for a prime q.
Alice→Bob: h(S)2 RA

Bob→Alice: h(S)2 RB

RA and RB are random numbers, and all exponentiation is
performed modulo p. Both parties compute K = h(S)(4 RA
RB) mod p, and exchange proofs of knowledge of K. The
2 in the exponent forces the exponential to be a generator
of the subgroup of order q, and the result K is tested to
insure that it's not 1. Further details can be found in
[Jab96].

This paper describes an additional limitation for
SPEKE in § 4.2, which is especially relevant for our
extension.

2.2. DH-EKE

In contrast with SPEKE, DH-EKE [BM92] uses a fixed
base g, and the DH "public keys" are kept secret from
eavesdroppers by symmetrically encrypting them using
the password as a (weak) key.

Alice→Bob: ES(gRA)
Bob→Alice: ES(gRB)

Both parties compute K = g(RA RB) mod p, and
exchange proofs of knowledge of K. The value g is a
generator of Zp

*, and p and E are chosen carefully to
insure that the exponentials do not contain verifiable
plain-text for ES. The symmetric encryption can be a
surprisingly simple XOR function, such as:

ES(x) = x ⊕ (h(S) mod p)
 The goals of SPEKE and DH-EKE are:

1. Without using S, one can't successfully perform
the exchange.

2. Without using S, attempting an exchange reveals
minimal information about S.1

3. Observing messages in a valid exchange reveals
no information about S.2

These goals restrict the Diffie-Hellman parameters used
in SPEKE, and more severely in DH-EKE. Analysis of
how they are met (or not met) is in [BM92, STW95, Jas96,
Pat97], and a summary of required constraints is listed in
[Jab96]. The additional limitation in § 4.2 is also relevant
to DH-EKE.

2.3. A-EKE

Augmented-EKE has been described in [BM93, BM95],
and further discussed in [STW95]. In this extended
method, DH-EKE is used to negotiate a key K, based on
shared knowledge of a secret verifier S, where S = h(C), a
one-way function of the password C. In our discussion of
extended methods, Alice is a user, and Bob a host who
stores the verifier.

A-EKE defines an additional digital signature function
where a private/public key pair {UC, VC} is chosen as a
function of C. Bob stores the public key VC as a second
verifier for C. The protocol begins with a DH-EKE
exchange that derives K based on shared knowledge of S.
Alice then computes her private key UC, signs K with UC,
encrypts the signature using K as a symmetric key, and
sends it to Bob. Bob decrypts using K, verifies the
signature using VC, and if the signature for K is correct,
he knows that Alice knows C.

Alice: compute UC,VC from C
Both: derive K using DH-EKE based on S
Alice→Bob: EK({K}UC

)
Bob: decrypt with K to get {K}UC

, and
verify signature of K using VC

If C is too-small, the "one-way" property doesn't
preclude dictionary attack, so storage of both VC and S
must be protected. To reduce storage requirements, or
perhaps to make a stolen-verifier dictionary attack more
expensive, one can use h(C)=VC.

A-EKE is essentially the addition of an “A” signature
method to extend DH-EKE. “A” uses the password as a
(weak) private key for a "secret public key" verifier stored
by the host. Although someone with the verifier may
crack a weak password, we still have the strong protection
of EKE if the verifier is kept secret, or if the password is
strong. The added insurance is that a stolen verifier can't
be used directly to masquerade as the user in the protocol.

1Each attempt only reveals that S ≠ S', for one specific S'.
2Not in the information-theoretic sense, but in the usual sense, depending
on a commonly accepted hard problem like discrete log.

2

As some attackers are more resourceful than others, this
protects each password as much as possible.

Bellovin and Merritt [BM93] also discuss how "A"
doesn't work with PK-EKE, a different variant of EKE
that uses a public-key cryptosystem. In PK-EKE, one
side chooses the session key for the other, which is
discussed further in § 4.4.

3. New extended methods

We now describe a “B” extension, and three new
combinations, naturally labeled A-SPEKE, B-SPEKE,
and B-EKE, which are alternate ways of achieving our
goals. These methods increase the size of the “extended
family” of extended methods from one to four. We start
by describing B-SPEKE.

3.1. B-SPEKE

“B” is similar to “A” in that it uses a public-key
technique, but it uses a second Diffie-Hellman exchange
instead of digital signature to prove Alice's knowledge of
the password C. B-SPEKE assumes both parties have
access to a verifier S=h(C), and that only Alice knows C.
SPEKE derives a first ephemeral key based on the
hashed-password S. The second exchange generates a
second ephemeral shared key, using C as Alice's secret
exponent. The two keys are combined to additionally
prove knowledge of the clear-text password from Alice to
Bob.

Alice Bob

U

Extension "B"

"Alice"

1K = Q RA
B

g, QB
S2 RBQB =

1K = Q RB
A

U = gX

2K = VX

2K = UC

S = h(C)

1 2P(K , K)

S2 RAQA =

1P("Alice", K)Q ,A

1P("Bob", K)

Figure 1. B-SPEKE, unoptimized

During password setup, a DH base g is chosen, and a
DH exponential V = gC is computed where C is based on

Alice's password. The shared secret for the primary
SPEKE exchange is S = h(C), using a one-way function.
The verifiers {g, V, S} are stored by Bob.

To mutually authenticate, as shown in figure 1, the
primary SPEKE exchange uses S to create a shared key
K1. Alice computes S from C. In the secondary DH
exchange, Bob chooses a random ephemeral exponent X,
and sends U = gX as a challenge. Alice computes K2 =
UC and Bob computes K2 = VX, resulting in a second
shared key. Alice then proves knowledge of the
combined values {K1, K2} to Bob, thereby proving
knowledge of C. The low-entropy concerns are resolved
by protecting the Bob's storage of V and S, and by the
combined proof of K2 with the partially-authenticated K1.
The subsequent session key is derived from K1.

Interestingly, while the B extension adds two messages
and A only one, optimizations in § 5 make this difference
irrelevant.

3.2. B-EKE and A-SPEKE
Replacing SPEKE with DH-EKE in the above yields a

B-EKE protocol. The differences between B-SPEKE and
B-EKE largely affect the speed of an implementation. A-
SPEKE is a straightforward application of Bellovin &
Merritt's augmented technique of A-EKE to SPEKE,
which has not been previously examined in the literature.

4. Analysis of B-SPEKE

The security of B-SPEKE clearly depends on the
difficulty of the Diffie-Hellman and the discrete log
problems. These two long-standing problems are closely
related, and the reader is referred to [MW96] for qualified
proof of their equivalence. Our informal analysis focuses
on how the protocol protects against eavesdropper,
middleman, and end-point attack, to either obtain
information about the password, or to obtain a shared
session key without using the password.

4.1. Preserving secrecy of K

It is noted in [STW95] that if the key (K) used in the
primary stage of A-EKE is ever obtained by a third party,
it allows a dictionary attack on the password. If K is later
used to secure a session containing sufficient known
plain-text, or remains in either system's memory for an
extended time, the thread of a stolen K may be
significant. This threat applies to any extended method.
To prevent it, K should be used only for the clear-
password-verification and derivation of the session key K'
= H(K), and then K should be promptly destroyed.

4.2. The “password-in-exponent” problem

An added constraint for both SPEKE and DH-EKE is
needed, which has not been well covered in earlier

3

papers. Discovery of the general problem of associativity
between the symmetric and asymmetric cryptosystems in
is attributed to Li Gong, but the [BM92] paper only
describes how this affects the PK-EKE protocol. This
same general problem also lurks in the DH methods, and
we show here how to keep it in check.

SPEKE doesn't use a symmetric cryptosystem, but it
does use a function to convert the password into a
generator of a group. If the DH base is chosen as gS for a
well-known g, as regretfully suggested in [Jab96], an
attacker can perform a dictionary attack after
participating in one failed protocol exchange.3

Alice: Q = (gS)RA

Alice→Bob: Q
Bob: K= QRB

The attack is accomplished by Bob, who sends gX,
using an arbitrary X, and for each candidate password T,
he compares the received proof of K against his computed
proof of QX/T. When a match is found, he knows T = S.
This attack is only possible when S is exposed in the
exponent corresponding to a known base. The preferred
SPEKE method in [Jab96] and the method shown in § 2.1
do not have this problem.

DH-EKE is similarly broken if one uses Pohlig-
Hellman-style symmetric encryption for the exponentials.
In this case the broken SPEKE and broken DH-EKE
protocols become essentially the same:

Alice: W = gRA

Alice→Bob: WS

Bob: K = ((WS)1/S)RB

This problem appears confined to this special case. In
general there must be no way to create a "dictionary of
exponents" corresponding to a fixed base, that maps each
exponent to a candidate password.

The problem surfaces again when the verifier for the
secondary exchange in B-SPEKE is V = gC, and we may
be tempted to use this V as the base of the primary
exchange, with the same modulus. In this case we avoid
the problem by using V = h(gC) to randomly distribute the
primary base.

The base in our primary SPEKE exchange can thus be
formed with g = S2, and S = h(gC). Common household
hash functions such as SHA-1 seem sufficient for h,
although further analysis of this use of a hash function
may be desired.

4.3. Bilateral key negotiation

Either method “A” or “B” can be used with any
suitable primary strong-password scheme, but only if both
parties contribute to the derived key. As noted in [BM93],
these extensions are not suitable for schemes where one
party unilaterally chooses the key, such as PK-EKE or a

"secret public key" method [GLNS93]. An attacker who
has stolen a verifier, can become a middleman in a
unilateral key negotiation, and force the same value of K
obtained from Alice to Bob, or vice versa. He then can
masquerade as Alice by passing her proof of the password
onto Bob.

The use of DH in the primary key exchange precludes
this attack, since even a middleman with knowledge of S
cannot negotiate the same key in two distinct sessions
with Alice and Bob.

The "optimal direct authentication protocol" in [Gon95]
is also described in a form where both Alice and Bob
contribute to the key. In this protocol, Alice chooses a
random public key VA, and sends it along with k', her
contribution, in a message symmetrically encrypted using
the password to Bob. Bob uses VA to seal a message for
Alice containing, among other things, his contribution k.
The session key is formed with the one-way hash h(k, k').

Alice→Bob: na, ES(VA, k')
Bob→Alice: {B, A, nb, cb, k, ES(na)}VA
Alice→Bob: Eh(k, k')(nb)

But how they contribute to the key is just as important.
The problem here is that Mary can get in the middle, and
using her knowledge of S she can decrypt Alice's first
message, replace VA with her own public key VM, and
send ES(VM, k') to Bob. Bob returns his message sealed
with VM. Mary unseals it, learns k, and reseals it for
Alice with VA. Now Mary can get out of the middle and
read all subsequent traffic encrypted with h(k, k').

A correction for this protocol is to omit k', and
compute the session key as h(k, VA). If Mary doesn't
replace VA, she can't learn k. If she does replace VA,
Mary has the intractable problem of trying to find an x
such that h(x, VA) = h(k, VM).

A similar change can be made to PK-EKE or similar
protocols to further add to our extended family.

4.4. Dual proof of K1 and K2

The proof step in B-SPEKE can use any well-known
method for proving knowledge of a high-entropy secret,
just as in A-EKE. But it is important that the proof
carefully combine K1 and K2.

The value of K2 cannot be sent to Bob, either in the
clear, or alone in a one-way hashed form. Since K2 is
presumed to have low entropy, the secondary DH
exchange could permit dictionary attack by an
eavesdropper.

It is also important that the value of K2 not be sent to
Bob in a reversibly encrypted form using K1 as a key. If
K2 is encrypted by K1,

Alice→Bob: EK1
(K2)

then someone who has stolen the verifier can perform a
middle-man attack on the primary exchange, decrypt K2
from Alice's proof, and re-encrypt K2 in a proof for Bob.

 Furthermore, if K1 is encrypted by K2,

3 Independently, at least Li Gong, Susan Langford, and I discovered this
problem in the paper.

4

Alice→Bob: EK2
(K1)

a dictionary attack is possible by a eavesdropper who
could use knowledge of all possible values for K2 to
determine K1, and decrypt the resulting session.

Thus the proof function P must combine both K1 and
K2 to preserve the following information-hiding
properties:

• knowledge of K2 must not disclose K1.
• knowledge of K1 must not disclose K2, with a

computation faster than exhaustive attack on K2.
P(K1, K2) can use an HMAC construction.

4.5. Salt

[BM93] discusses how "salt" benefits the exchange,
which we'll reiterate. A salt factor in the password-to-
verifier function insures that two different users' stored
verifiers appear different even when the passwords are the
same, and prevents a single dictionary of verifiers from
being applicable to all users. Here are two possibilities
for B-SPEKE, where g is a unique salt for each user:

1. Bob sends g to Alice after she identifies herself,
and before the exchange.

2. Use self-salting, where g is a function of Alice's
name, known to both parties.

It might appear dangerous that Bob sends salt to
anyone who asks for it. But in a network protocol, salt
isn't particularly useful without the rest of the verifier.

4.6. Other analysis

Note that even if Boris steals S and V, and poses as
Bob, we don't want him to learn C from this protocol any
easier than by a direct dictionary attack. If S=h(C), then
the difficulty of determining C from S depends (in part)
on the irreversibility of h. If S=h(V), the difficulty of
obtaining C from S depends on discrete log. Both these
problems are presumed sufficiently hard.

If Boris uses S to perform the primary SPEKE
exchange with Alice, he has a chance to test the returned
proof of {K1, K2} corresponding to his chosen value of
gX. But since he already knows S and V, his job to
perform a dictionary attack is made no easier.

We also note that it is worthwhile to insure that V is of
large order, and that C is large enough to make gC

irreversible. For Zp
*, where p = 2q+1, C should be

greater than 1 and less than p-1. The function C = 2 +
(h(password) mod p-3), does the trick.

5. Performance and implementation issues

Given that large integer arithmetic is expensive, and
that extended methods apparently double the amount of
computation, a natural question to ask is: How slow is it?
The answer depends mostly on the size of the number
field, and the nature of the group.

There's enough discussion of bit-lengths in the
literature that we won't dwell on it. Depending on the
security goals, opinions vary on the size of a suitable field
for DH security, in Zp

*, from several hundred bits to a
thousand or two. For elliptic curve groups, it seems
reasonable to allow the field size to be much smaller, due
to the apparently increased difficulty of computing
discrete logs [P1363]. There is also the issue of using
short DH exponents, which has been covered in [vOW96,
Jab96].

The relative performance of different DH groups in
optimized software implementations was described in
[SOO95] as running about 6 to 7 times faster in elliptic
curves than a traditional Zp

* version of comparable
security. For example, performing a DH exponentiation
on a 25 MHz SPARC IPC (roughly equal to a 66 MHz
Intel 486) was ~ 900 msec., while the equivalent elliptic
curve operation ran in ~ 125 msec. Our initial
experiments with unoptimized implementations also
showed performance improvement, although with less
dramatic results. There are a number of ongoing efforts
to implement high performance methods in EC and Zp

*,
and our analysis of the relative speeds is currently
incomplete.

We'll also leave detailed discussion of the technical
differences when using EC groups for another paper,
except for one important note: DH-EKE is not an ideal
candidate for elliptic curve methods, due to its strict
requirements for no verifiable plain-text in the encrypted
exponentials. To make it work seems to require a
practical one-to-one mapping function of the points on a
curve onto a continuous range of integers, which appears
to be impossible. SPEKE does not use symmetric
encryption, which makes it easier to use elliptic groups.
Mapping the password to an arbitrary prime-order point
on an elliptic curve is a straightforward procedure.

So, assuming the most efficient possible
implementation of group operations, what else might be
done to make any of these extended protocols efficient?

The total computational effort required for both “A”
and “B” extensions, whether using an optimized digital
signature method, or a Diffie-Hellman exchange, appears
to be roughly the same. The dominant cost in both
choices is due to three exponential calculations during a
run of the protocol. (One of four DH calculations is done
during password setup.) But there remain several factors
that might affect the perceived response time from the
user's perspective:

• single- vs. multi-threaded client & server
• asynchronous vs. synchronous RPC messages
• for “A”, which digital signature scheme is used
• for “B”, different groups for each stage
• relative CPU speed of client & server
• speed of the communication channel

The simplistic form of B-SPEKE (figure 1) performs
the “B” extension with two messages added after a

5

completed mutual SPEKE exchange. But the added proof
of {K1, K2} eliminates the need for the earlier proof of K1
from Alice to Bob. By deleting the redundant proof and
consolidating the messages, we get the protocol shown in
figure 2.

B-SPEKE does not necessarily require more rounds of
communication than SPEKE. If self-salting is used
(§ 4.5), Alice can identify herself in the same message
containing her SPEKE challenge QA. This allows the
protocol to be further reduced to three messages, since
Alice no longer has to obtain g from Bob.

"Alice"Alice Bob

1K = Q RA
B

g, Q , U B

P(K)1

S2 RBQB =

1K = Q RB
A

U = gX

2K = VX

2K = UC

S = h(C)

1 2P(K , K)Q ,A

S2 RAQA =

Figure 2. B-SPEKE, combined

Reducing messages is a concern for slow networks, but
in fast networks a larger concern may be to reduce
elapsed running time. Two ways to achieve this are
parallel computation, and pre-computation of exponential
values.

"Alice"

Alice Bob

1K = Q RA
B P(K)1

S2 RBQB =

1K = Q RB
A

U = gX

2K = VX
2K = UC 1 2P(K , K)

S2 RAQA = , U QB

QA

Figure 3. B-SPEKE — parallel computation

Figure 3 shows an arrangement that reduces the
elapsed running time. Assuming that the time required
for each exponentiation is z, and that communication
time is negligible, the running time of the protocol is
reduced from 7z to 3z. Part of the gain is due to the pre-
computation of the pair (X, U) by Bob.

A cache of short-lived pre-computed values at the host
seems reasonable to increase the efficiency of handling
transient bursts of traffic. However, prolonged storage of
pre-computed ephemeral data may increase the risk of
disclosure. This risk must be evaluated with respect to
the client and server's operating environment. The use of
a fast hash function S = h(C) may be a concern for those
truly fear that the verifier database may be stolen. In this
case, one may want to deliberately insure that the
function for S is slow (perhaps S=h(V)), to make
dictionary attacks more expensive.

The increase in the number of messages in figure 3
from 4 to 5 is needed to keep both parties busy crunching
numbers. But a protocol with an odd number of messages
may also not fit with a standard request/reply
communication model, which may force an empty 6th
reply message. And the addition of two messages will
result in a slower protocol if the average time to pass a
message is greater than 2z. Also, note that the client
keeps busy computing while the server is acting on the
request, which either implies a multi-threaded client, or
an asynchronous communication model.

When considering implementations of A-EKE or A-
SPEKE, the most suitable signature operations seem to be
ones where an arbitrary value can serve as the private
key, which makes the exchange simpler, if not faster. In
general, the large family of discrete log signature schemes
seem suitable, and in these schemes at least one
exponentiation is required for signing, and two for
verifying. To eliminate an additional step of inversion,
we could use a signature method such as the Nyberg and
Rueppel variation [P1363].

Maximal use of pre-computation and parallel
computation also affects the relative performance of “A”
and “B”. In DH-EKE, the calculation of the random
exponentials can be done in advance on both the client
and the server, and in the case of B-EKE, the challenge
exponential can also be pre-computed on the server.

In figure 4 we show an optimized B-EKE, and in
figure 5 an optimized A-EKE using a Nyberg-Rueppel
method. Ignoring the pre-computation of QA, QB, and
UC, the A-EKE method runs in 4z, while B-EKE runs in
2z.

The ability to pre-compute both QA and QB might be
reasonable for some DH-EKE systems, but it seems
inappropriate for SPEKE, which determines these values
based on each user's password.

Also, note that the protocols in figures 4 and 5 have
Bob processing data after a reply is sent, and that there
are two replies sent in sequence from Bob, with no

6

intervening request from Alice. This implies either a
multi-threaded server implementation, or asynchronous
message passing.

Alice Bob

1K = Q RA
B E (Q)S B

P(K), U1

gRAQA = gRBQB =

1K = Q RB
A

"Alice", E (Q)S A

U = gX

P(K , K)1 2

2K = V X2K = UC

Figure 4. B-EKE with pre-computation

Even without pre-computation, if we assume ideal
infinitely fast network, the time to complete a full A-EKE
method is 5z, while B-EKE can run in 4z. This also
applies to A-SPEKE vs. B-SPEKE. This advantage of
“B” over “A” is due to the symmetry of the secondary DH
exchange.

All considered, assuming use of optimized elliptic
curve methods wherever possible, we estimate that a B-
SPEKE implementation may be significantly faster than a
comparable A-EKE method, in a fast network. In a very
slow network, the cost of the two round-trips would make
either computation negligible and tend to equalize
perceived response time. In any case, either class of
method requires a small fraction of a second to run on
modern desktop computers.

In general, extended methods require no extra
messages over their un-extended counterpart -- a two-
message form can still negotiate an authenticated key,
albeit without explicit verification of that key.

6. Benefits of “A” and “B” extensions

This section summarizes the benefits of extended
strong methods. Assuming that the password C is
sufficiently small, and that Alice authenticates Bob from
his knowledge of the verifier S, [BM92] observes that two
attacks are unavoidable for a thief who obtains S:

1. He can perform a dictionary attack to learn C.
2. He can masquerade as Bob to Alice.

It is reasonable to ask whether these threats are so
overwhelming that the further protection afforded by the
“A” and “B” extensions is irrelevant. With this in mind,
we identify reasons why the further protection is useful.

The ability to succeed with a dictionary attack relates
directly to the strength of C. When C is large enough,

nobody can obtain C from S. Considering that a
significant fraction of the user community might choose a
"good" password, they deserve the extra protection.

P(K)

"Alice",

Verify signature

Alice Bob

1K = Q RA
B E (Q)S B

1

gRAQA = gRBQB =

1K = Q RB
A

using VC

E (Q)S A

Sign K with UC1 E {K }
C1 UK1

Figure 5. A-EKE with pre-computation

In special cases, either extension may make it
appropriate for a large entropy C to serve as a common
password for multiple hosts, for example when there is
another separate mechanism in place for the
authentication of the host to the user. Without using an
“A” or “B” extension, this case allows one host to
impersonate the user to another, which may be an
unacceptable risk.

We also observe that knowledge of S, without
knowledge of C, does not permit a thief to become a man-
in-the-middle of a valid conversation between Alice and
Bob. Without detailed knowledge of a valid conversation,
he may be unable to successfully pose as Alice or Bob.

Extended strong password methods provide security
that scales appropriately with the quality of the password.
User-selected passwords have unpredictable entropy.
They can be empirically qualified as “good” if they don't
belong to a set of “bad passwords”, but there's no
guarantee that an attacker won't find a better dictionary.
Even machine-generated passwords of known entropy
typically have less-than-large entropy, to keep the
password memorizable. These methods do the best that
can be done for passwords of uncertain quality, and they
handle both large and small passwords appropriately.
The user is not unnecessarily exposed in cases of theft of
the host database, on-line attacks can be detected, and
arbitrarily powerful eavesdroppers learn nothing about
even tiny passwords.

A typical use for these methods is in a single-sign-on
system where user authentication incorporates a
password. Passwords deserve special protection when
there is a chance for their use in accessing multiple
systems. Furthermore, since people tend to re-use
passwords for multiple purposes, against all good advice
to the contrary, strong password protection seems
warranted even for “low-security” applications. Strong

7

methods are essential for this critical link between the
user and the system.

Even with wide-spread deployment of public keys,
memorized secrets retain a unique and important role in
authentication. Systems based only on stored keys
require secure long-term storage on both ends of the
connection, or when relying on a certificate hierarchy,
long-term indirect trust relationships between a multitude
of parties. Strong password methods can reduce these
dependencies, add an extra independent factor for
authentication, and provide a simple and familiar way to
initiate secure electronic conversations.

7. Summary

Several extended authentication protocols have been
described for strong password authentication. These
methods approach the limits for protecting small
passwords without requiring extra keys. Discussion of
implementation issues show that these methods are
superior to traditional password methods, and can run
faster than some previously described strong methods, by
using elliptic curve groups, pre-computation, and by
balancing the computational load.

8. References

Some of the references here are available on the
web at: http://world.std.com/~dpj/

[BM92] S. Bellovin and M. Merritt, "Encrypted Key
Exchange: Password-Based Protocols Secure Against
Dictionary Attacks", Proceedings of the I.E.E.E.
Symposium on Research in Security and Privacy,
Oakland, May 1992.

[BM93] S. Bellovin and M. Merritt, "Augmented Encrypted
Key Exchange: a Password-Based Protocol Secure
Against Dictionary Attacks and Password File
Compromise", AT&T Bell Laboratories (c. 1993).

[BM95] S. Bellovin and M. Merritt, "Cryptographic Protocol
for Remote Authentication", U.S. Patent #5,440,635,
August 8, 1995.

[GLNS93] L. Gong, M. Lomas, R. Needham, & J. Saltzer,
"Protecting Poorly Chosen Secrets from Guessing
Attacks", I.E.E.E. Journal on Selected Areas in
Communications, Vol. 11, No. 5, June 1993, pp. 648-
656.

[Gon95] L. Gong, "Optimal Authentication Protocols Resistant
to Password Guessing Attacks", Proceedings of the
8th IEEE Computer Security Foundations Workshop,
County Kerry, Ireland, June 1995, pp. 24-29.

[HDM77] M. Hellman, W. Diffie and R. Merkle,
"Cryptographic Apparatus and Method", U.S. Patent
#4,200,770, April 29, 1980.

[Jab96] D. Jablon, "Strong Password-Only Authenticated Key
Exchange", Computer Communication Review, vol.
26, no. 5, pp. 5-26, October 1996.

[Jas96] B. Jaspan, "Dual-workfactor Encrypted Key
Exchange: Efficiently Preventing Password Chaining
and Dictionary Attacks", USENIX Security
Conference Proceedings, July 1996.

[Luc97] S. Lucks, "Open Key Exchange: How to Defeat
Dictionary Attacks Without Encrypting Public Keys",
Proceedings of the Security Protocol Workshop '97,
Springer-Verlag, April 7-9, 1997.

[MW96] U. Maurer and S. Wolf, "Diffie-Hellman Oracles",
CRYPTO 96, LNCS 1109, Springer-Verlag, 1996, pp.
268-282.

[NIST94] National Institute of Standards and Technology, NIST
FIPS PUB 186, "Digital Signature Standard", U.S.
Department of Commerce, May 1994.

[Pat97] S. Patel, "Number Theoretic Attacks on Secure
Password Schemes", Proceedings of the 1997 IEEE
Symposium on Security and Privacy, May 5-7, 1997.

[P1363] IEEE P1363 working group, "IEEE P1363 Working
Draft -- Standards for Public-key Cryptography", This
document is currently available at:
http://stdsbbs.ieee.org/1363

[SOO95] R. Schroeppel, H. Orman, S. O'Malley, "Fast Key
Exchange with Elliptic Curve Systems", TR 95 03,
Department of Computer Science, The University of
Arizona, March 31, 1995.

[STW95] M. Steiner, G. Tsudik, and M. Waidner, "Refinement
and Extension of Encrypted Key Exchange",
Operating Systems Review, vol. 29, Iss. 3, pp. 22-30
(July 1995).

[vOW96] P. vanOorschot, M. Wiener, "On Diffie-Hellman Key
Agreement with Short Exponents", Proceedings of
Eurocrypt '96, Springer-Verlag LNCS, May 1996.

* * *

8

