Password Authentication Using Multiple Servers

David P. Jablon

Integrity Sciences, Inc.
www.IntegritySciences.com
dpj@world.std.com

Abstract. Safe long-term storage of user private keys is a problem in
client/server systems. The problem can be addressed with a roaming
system that retrieves keys on demand from remote credential servers,
using password authentication protocols that prevent password guessing
attacks from the network. Ford and Kaliski’s methods [11] use multiple
servers to further prevent guessing attacks by an enemy that compro-
mises all but one server. Their methods use a previously authenticated
channel which requires client-stored keys and certificates, and may be
vulnerable to offline guessing in server spoofing attacks when people must
positively identify servers, but don’t. We present a multi-server roaming
protocol in a simpler model without this need for a prior secure channel.
This system requires fewer security assumptions, improves performance
with comparable cryptographic assumptions, and better handles human
errors in password entry.

1 Introduction

Cryptographic systems that can tolerate human misbehavior are evolving, with
fitful progress. A persistent theme is that people tend towards convenient be-
havior despite well-intentioned security advice to the contrary. It’s hard for us
to memorize and type strong cryptographic keys, so we use weak passwords. It’s
hard for us to take the necessary steps to insure that our web browser is securely
connected to the correct web server, so we don’t. To counter these problems,
designers of security systems must accept our weaknesses, and must not assume
that we can fully control these human devices. [1,8, 20]

The common practice of storing password-encrypted private keys in work-
station files is a backwards evolutionary step. Long-term storage of password-
crackable keys on a poorly managed machine creates opportunity for theft and
eventual disclosure of these keys. An ideal system stores password-derived data
only in the user’s brain and other secure locations, such as a well-managed server,
or perhaps a smartcard. When a global network is usually available, but smart-
cards are not !, it seems a shame to degrade the power of private keys with
persistent untrustworthy storage. Roaming protocols address this problem.

! In saying that smartcards are “not available”, we mean with card readers on all
acceptable machines and cards in all relevant pockets, noting that inconvenience,
cost, and other human issues often pose barriers to use and deployment.

This paper describes a new roaming protocol that can use just a small pass-
word to securely retrieve and reconstruct a secret key that has been split into
shares distributed among multiple servers. The system prevents brute-force at-
tack from an enemy that controls up to all but one of the servers, and has
fewer security assumptions, higher performance, and higher tolerance of human
misbehavior than similar methods previously described.

The new system does not require prior server-authentication, as does earlier
work [11] that relies on techniques like server-authenticated Secure Sockets Layer
(SSL) [12,7], which is known to be vulnerable to web-server spoofing problems.
[6,8] A further advance is to decrease the amount of computation by using
smaller groups, without introducing new cryptographic assumptions. Finally,
we show how the protocol better tolerates human errors in password entry, by
insuring that corrected typographical errors are gracefully ignored and are not
counted against the user as suspected illegal access attempts.

These benefits can also be realized in non-roaming configurations.

2 History of Roaming Protocols

The goal of a roaming protocol is to permit mobile users to securely access and
use their private keys to perform public-key cryptographic operations. We refer
to mobility in a broad sense, encompassing acts of using personal workstation,
and other people’s workstations, without having to store keys there, using public
kiosk terminals, as well as using modern handheld wireless network devices. We
want to give users password-authenticated access to private keys from anywhere,
while minimizing opportunities for an enemy to steal or crack the password and
thereby obtain these keys.

Smartcards have promised to solve the private key storage problem for roam-
ing users, but this solution requires deployment of cards and installation of card
readers. The tendency for people to sacrifice security for convenience has proved
to be a barrier to widespread use of solutions requiring extra hardware. This is
one motivation for software-based roaming protocols.

Throughout the rest of this paper roaming protocol refers to a secure password
based protocol for remote retrieval of a private key from one or more credentials
servers. Using just an easily memorized password, and no other stored user cre-
dentials, the user authenticates to a credentials server and retrieves her private
key for temporary use on any acceptable client machine. The client uses the key
for one or more transactions, and then afterwards, erases the key and any local
password-related data.

In our discussion we refer to the user as Alice and to credentials servers
generally as Bob, or individually as B;, using gender-specific pronouns for our
female client and her male servers.

Roaming. The SPX LEAF system [24] presents a roaming protocol that uses
a server-authenticated channel to transmit a password to a credentials server
for verification, and performs subsequent retrieval and decryption of the user’s

private key. The credentials server protects itself by limiting guessing attacks that
it can detect, and the protocol prevents unobtrusive guessing of the password
off-line.

When a credentials server can determine whether a password guess is correct,
it can prevent or delay further exchanges after a preset failure threshold.

Password-Only Protocols. The EKE protocols [1] introduced the concept
of a secure password-only protocol, by safely authenticating a password over an
insecure network with no prior act of server authentication required. A series of
other methods with similar goals were developed, including “secret public key”
methods [13,15], SPEKE [18], OKE [21], and others, with a growing body of the-
oretical work in the password-only model [16,4, 2, 3]. Most of these papers stress
the point that passwords and related memorized secrets must be conservatively
presumed to be either crackable by brute-force or, at best, to be of indeterminate
entropy, and this warrants extra measures to protect users.

The roaming model and password-only methods were combined in [23] to
create protocols based on both EKE and SPEKE. These authors showed that
simple forms of password-only methods were sufficient for secure roaming ac-
cess to credentials. Other roaming protocols were described in [13,15], [26], [16],
and [22], all being designed to stop off-line guessing attacks on network mes-
sages, to provide strong software-based protection when client-storage of keys is
impractical.

Multi-server Roaming. In a further advance, Ford and Kaliski described
methods [11] that use multiple servers to frustrate server-based password crack-
ing attacks to an amazing degree. Single-server password-only protocols prevent
guessing attacks from the client and the network but do not stop guessing based
on password-verification data that might be stolen from the server. At the cost
of using n related credentials servers to authenticate, Ford and Kaliski extended
the scope of protection to the credentials server database. In their methods, an
enemy can take full control of up to n — 1 servers, and monitor the operation of
these servers during successful credential retrieval with valid users, and still not
be able to verify a single guess for anyone’s password, without being detected
by the remaining uncompromised server.

Yet, the methods detailed in [11] all rely on a prior server-authenticated
channel. We believe this is a backwards evolutionary step, in introducing an un-
necessary and potentially risky security assumption. We remove this dependency
on a prior secure channel for password security, and present other improvements
in our description of a new password-only multi-server roaming protocol in Sec-
tion 4.

3 Review of Ford and Kaliski

We review here three methods described in [11], focusing particularly on one
which we refer to as FK1.

3.1 FK1

FK1 uses multiple credentials servers, with a splitting technique to create multi-
ple shares of a master key, and a blinding technique to get each share back from
a credentials server without revealing the password to the server or anyone else
in the process.

The authors used the term password hardening to refer to their key-share
retrieval process, which seems essentially the same concept as password amplifi-
cation in [1]. To avoid confusion we avoid using either of these terms outside of
their original contexts. Also, in our description of FK1, we take some liberties
in interpreting their protocol by using a cryptographic hash function h for a
few different purposes, and we use a somewhat different notation than in their
paper. (Table 1 in Section 4.2 summarizes the notation that we use to describe
both FK1 and our methods.)

FK1 Parameters. The FK1 system operates in a subgroup of order ¢ of ZZ7
where p = 2¢+ 1 with prime p and ¢. The system uses n > 1 credentials servers,
and all exponentiation is done modulo p.

FK1 Enrollment. To enroll in the system, the user, Alice, selects a password
P, and a series of random numbers {y,...yn}, each in the range [1,¢ — 1]. For
each i € [1,n] she computes a secret key share S; := (h(P))?¥ using a mask
generation function h.

Alice sends each y; along with her identifier A in an enrollment message
to the i*" server, B;. Alice computes a master key K,, for herself using a key
derivation function of the shares, K, := h(S1,...,Sn). Then, using independent
keys derived from K,,, she encrypts some of her most private secrets to be stored
wherever she desires.

K, is clearly a strong secret, as is each share S;, and a neat result of this
construction is that it incorporates P into every share, but it is impossible for
an attacker to even verify trial guesses for P, unless he obtains all n shares.

FK1 Authenticated Retrieval. To retrieve her master key at a later time,
Alice chooses a random = €g [1,q — 1], computes @ := (h(P))??, and for each
i € [1,n], she sends @ to B;. Each B; computes R; := Q¥¢, and sends R; in reply.

Client: { request, A, Q = h(P)** } - B;
Server B;: { reply, R; = Q¥ } — Client

The value x serves as a blinding factor, to insure that the password cannot
be determined from @), and R; is essentially a blinded form of the key share.

Alice recovers each key share with S; := R}/* ™% = (h(P))¥. which re-
moves the blinding factor. She then reconstructs her master key.

Alice then derives n unique authentication keys (for each i € [1,n], K; :=
h(Kml|i)). Although their paper is not specific on how it should be done, Alice
uses the K; derived keys to authenticate to each B;.

Each server B; then reconciles each act of authentication with the corre-
sponding received @ value, to determine whether the request was legitimate, or
perhaps an invalid guess from an attacker.

3.2 Server Pre-authentication

FK1 requires server-authenticated connections to each server to prevent an evil
party (who perhaps has compromised one of the servers) from controlling the
communications channels to all the servers. The problem is this: An enemy who
controls all channels can substitute known false replies, and then perform an
attack on the expected value of the combined key as revealed by Alice. Note
that the combined key is completely determined by the password and the replies
sent by the attacker. If the user reveals information about K, to an enemy who
also knows all y;, the enemy can verify off-line guesses for P.

The description in [11] does not specify an explicit method for server au-
thentication, but does suggest the use of SSL. It also suggests that server-
authentication is optional in the case where the server gives the user “a proof of
knowledge that [R;] was computed from [()] with the correct exponent.” How-
ever, no proof or verification process is described.

To establish a secure channel to the server with a typical server-authenticated
SSL solution, as implemented in a web browser, requires the client to have a root
key for one or more certificate authorities. It also requires the server to have ac-
cess to a chain of certificates that associate a client root key with the public key
of the named server. The client must further include certificate validation soft-
ware and policy enforcement to validate a certificate of the appropriate server (or
servers) selected by the user. All of this is fairly standard. However, ultimately
the user must insure that the server name binding is correct. This requires sig-
nificant action and attention by the user — which the user can easily omit.

The complete reliance on SSL, especially if used in the browser model, is
risky. The user can be tricked into using “valid” SSL connections to malicious
servers, or tricked into not using SSL at all. This process is subject to several
types of failure. While these failures might be called human error, in our view
the error is in having unrealistic expectations of the human participant.

Furthermore, if we presume that a common set of root certificates in the
client can validate both servers, we’ve now introduced one or more single points
of failure into the system. There is effectively a single point of attack at each
location where a private key resides for the root or any subordinate certificate
authority. This may be significant, as a primary goal of the multi-server model
is to eliminate single points of failure.

The aforementioned certificate chain attack can be achieved by compromis-
ing any single system that has a key to create a valid-looking certificate chain
for the two servers in question. Furthermore, as described above, an attack in

SSL browser model can trick the user into using “valid” SSL connections to ma-
licious servers, or into not using SSL at all. To counter these threats, in some
environments, the identity of the server may be fixed in the configuration of the
client, but this approach severely limits functionality.

Our main point regarding this issue is that the risks here, however great or
small, are unnecessary. We remove the dependency on a prior server-authenticated
channel in our alternative model.

3.3 Other Variations — FK2, FK3

Two variations on FK1 that were also presented in [11] include a method using
blind signatures [5], and a “special case” method that uses a password-hardening
server to convert a password into a key that is suitable for authenticating to a
conventional credentials server. We’ll call these methods FK2 and FK3, respec-
tively. The authors suggest that the communications channel to the conventional
server needs to be integrity protected. In fact, both servers’ channels need to be
protected.

Handling Bad Access Attempts. In their discussion of FK3, it is suggested
that the client authenticate itself with “the user’s private key” and that the server
keep track of the number of password hardenings and reconcile this with the
number of successful authentications. If there are “significantly more” hardenings
than authentications, then the account would be locked out.

We note that unsuccessful logins may be quite common. Passwords are fre-
quently mis-typed, and users may often enter the wrong choice of multiple pass-
words, before finally getting it right. If a long-term fixed limit is place on such
mistakes, valid clumsy users might be locked out. On the other hand, if the
system tolerates a three-to-one attempt-to-success ratio, an occasional guessing
attack by an enemy over the long term might remain undetected.

To address this problem, the system should be forgiving, and not account for
transient mistakes by a valid user in the same way as invalid access attempts by
unknown users. Qur protocol addresses this problem. We provide detail for an
alternative reconciliation process in our method to deal with transient password-
entry mistakes by the user.

4 New Protocol

We now present our improved model for a password-only multi-server roam-
ing protocol, comparing it to model used in FK1, followed by a more detailed
description of our protocol.

4.1 New Model

Our model for multi-server roaming is similar to that in FK1, but with some
new features and characteristics.

First, our model permits authentication messages to be sent over an unpro-
tected channel; No SSL is required. To prevent the possibility that an enemy in
control of the channel can trick Alice into using an improper master key, Alice
confirms that the master key is correct before using it to create any data that
might be revealed to the enemy.

Second, the authentication step uses a signed message to authenticate valid
logins, as well as prior legitimate-but-mistaken logins.

Enrollment Model. At enrollment time, Alice creates n shares of a master
symmetric key K, where each it" share S; is formed as a function of her password
P raised to a random exponent y;. The shares are combined with a function
such that an attacker who has knowledge of any proper subset of shares cannot
distinguish K, from a random value in the same range.

Alice then somehow conveys each exponent y; to be stored as a closely
guarded secret by the i** server.

Alice also selects a public/private key pair {V,U} for digital signatures, and
symmetrically encrypts private key U using a key derived from K,, to create
her encrypted private key Uk . Finally, she creates a proof value proofpx,, that
links the password to her master key.

Alice sends V' to each of the n servers, and stores Uk and proofpgk,, in a
convenient place, perhaps on each of the servers. The enroll protocol flow must
be performed through a secure channel that authenticates the identity of Alice,
A, to each i** server B;.

Client: { enroll, A, V,y; } = B;
Client: { record, A, Uk, proofpk,, } — B;

Authentication Model. At login time, to reconstitute her master key and
retrieve her private key, Alice sends a randomly blinded form of the password @
to each server. Each server in turn responds with a blinded reply R; consisting
of the blinded password raised to power of the secret exponent value (R; := Q¥?)
which represents a blinded share of the user’s master key. At least one of the
server’s also sends Alice her encrypted private signature key Ux and proofpk,, -

Client: { request, () } — B;
Server B;: { reply, Q¥, Uk, proofpk,, } — Client

Interestingly, the channel though which Alice retrieves Ux and proofpk,,
does not have to guarantee the integrity of these values. This is discussed further
in Section 4.4.

Alice unblinds each reply to obtain each key share and combines the shares
to rebuild her master key K,,. She then verifies that the master key is correct
using the proof value proofpk,, and her password P. If the proof is incorrect, this
implies that at least one of the key shares must be incorrect, and she must abort
the protocol without revealing any further information about K, or P to the

network. Otherwise, she uses a key derived from K, to decrypt her encrypted
private key (and any other desired data), and then completes the protocol by
proving her identity to each server. For each blinded password () that she recently
sent to each server, she sends a signed copy of the blinded password.

Client: {confirm, Q1, {Q1}v } = B;
Client: {confirm, Q2, {Q2}v } = B;

Each server matches the signed (), values from Alice against its list of re-
cently received blinded passwords, and removes any matching entries that are
accompanied by valid signatures. The remaining entries, if not confirmed within
a reasonable amount of time, are considered to be suspected illegal access at-
tempts, which we label bad. Counting bad access attempts may be used to limit
or delay further blinded share replies for the user’s account if the counts rise
above certain thresholds.

Verification of Master Key. As mentioned above, one new feature of our
method is that Alice can perform the authentication over insecure channels. She
retrieves (typically from a credentials server) her verifier proofpg,,, and then
confirms the validity of the reconstructed master key by comparing a keyed hash
of her password with it to proofpg,, . If the values don’t match, Alice aborts the
protocol.

Verification of Legal Access. Another enhancement of our method relates
to how Alice proves knowledge of the master key to each server, and how each
server reconciles this information with its own record of access attempts.

Asin FK1, the servers detect illegal access attempts by looking for a message
from Alice that contains a proof of her knowledge of the master key, and by
implication, proof that she knows her password. If a valid proof is not associated
with the blinded password value, the server must trigger a bad access event for
Alice’s account. Our method differs from FK1 in our detailed description of the
construction of Alice’s proof and how each server uses the proof to forgive Alice’s
mistakes in password entry.

In FK1, the user authenticates to each server using a unique key derived from
the master key. We note that when not using SSL, simply sending h(K,||¢) to
B; would expose the method to a replay attack. To prevent this, we make the
proof incorporate the blinded request value that is sent by Alice. Furthermore,
we recognize that Alice occasionally mis-types her password, and we’d rather
not penalize her by incrementing her illegal access count, which might cause
premature account lockout. We want each server to forgive her mistakes, when
she can subsequently prove to the server that she ultimately was able to enter
the correct password.

Forgiveness Protocol. User’s honest mistakes are forgiven by sending evidence
of recent prior invalid access attempts after each successful authentication. Upon
receiving and validating this evidence, each server erases the mistake from the
record, or records the event as a corrected forgivable mistake. By fine-tuning a
server’s event log in this manner, a system administrator gets a more detailed
view of when the system is truly at risk, as opposed to when valid users are
merely being frustrated.

A forgiving system seems to require at least one signature generation step
on the client and one signature verification step for each of the servers. To
minimize computation, the signature steps provide the combined functions of
authenticating the user, and proving that the request came from that user. In
constructing a valid authentication message for a user, the client includes the
set of all recent challenge messages issued by that user, digitally signs the result
with the user’s private key, and sends it to all servers. Each server verifies the
signature to authenticate the user, and at the same time validate evidence of her
recent forgivable mistakes.

Each server, upon receiving Alice’s confirm message, will attempt to recon-
cile her proof of her access attempts against his recorded list of recent attempts.
He does this by verifying Alice’s signature on each @) value. Upon successful ver-
ification, he knows that the) value was indeed sent by someone who ultimately
knew the password, regardless of whether that request message was specifically
used to recreate her master key.

4.2 Detailed Protocol

We now describe an implementation of the protocol in detail, using the notation
summarized in Table 1 below.

Parameters. In this protocol we define two security parameters, j which rep-
resents the desired bit-strength for symmetric functions, and k representing the
number of bits required for the modulus of asymmetric functions.

We define G, as the subgroup of order q in Z7, where p, ¢ and r are odd
primes, p = 2rq+ 1, 28 > p > 28~ p £ ¢ and 2% > ¢ > 2%~ We also use
a function that maps a password to a group element gp €G,, and suggest that
gp = h(P)?" mod p.

(Alternately one might use an elliptic curve group in GF(p) with a group
of points of order r - ¢ approximately equal to p, prime ¢, and small co-factor
r € [1,100] or so. In this case we would replace all exponentiation with scalar
point multiplication, and define gp = r - point(h(P)), where point uses h(P) to
seed a pseudo-random number generator to find an arbitrary point on the curve.

[17])

Enrollment. Alice selects a password P, computes gp := h(P)?", and creates
a private key U and corresponding public key V suitable for performing digital
signatures.

Table 1. Notation

Symbol Meaning [Reasonable example]

C; list of credentials stored by B;
gp element of G, corresponding to P [h(P)*"]
G, group of prime order g
in Z;, p=2rq+1, 2% > g >2%71 9% 5 p> 9281 pand r prime]
h a hash function [h = SHA1]
] security parameter for resisting brute-force attack [80]
k security parameter for resisting NFS discrete log attack [1024]
K; Shared key between Alice and B; [h(Km||7)]
Ky, Alice’s master key, a hash of concatenated shares, h(S1||...||S,) mod 27
L; list of suspected bad attempts stored by B;
P user’s password, 0 < P < 2% [SHA1(password)]
R; a blinded key share = gp®¥?
Si a key share = gp¥?
U Alice’s private signing key
Uk Alice’s encrypted private key = x,,{U}
14 Alice’s public key corresponding to U
Yi Alice’s secret share exponent stored by B;
{y} message y encrypted with symmetric key x
17219} message y decrypted with symmetric key z
{y}« message y signed with private key x

She then creates n key shares where each ‘" share S; € G, is formed as
S; = gpY¥ using randomly chosen y; €g [1,¢ — 1]. She then creates her master
j-bit symmetric key with K,, := h(S1||...||Sn) mod 27, creates her encrypted
private key as Uk := g,, {U}, and creates her key verifier proofprk,, := h(Kn||g)-

To enroll these credentials, the client sends Alice’s credentials to be stored
in a list C; maintained on each B;. They must perform these actions using an
authenticated communication method that assures the proper identity of A:

Client: for each i € [1,n], { enroll, A4, y;, V, Uk, proofprk,, } = B;
Servers: store { A, y;, V, Uk, proofpk,, } in C;

Authenticated Retrieval. For authenticated credential retrieval, the client
and servers and perform the actions listed below. In this process, each server
maintains a list L; containing a record of suspected bad access attempts.

Client:
select a random number z € [1,¢q — 1]
@ = gp” modp
{ request, A, Q } - Servers

Servers:
retrieve { A, y;, V, Uk, proofprk,, } from C;

t := CurrentTime

append { A4, Q, V,t } to L;

Rz' = Qy,

{ reply, R;, Uk, proofrk, } — Client

Client:
for each i € [1,n],
S; = R;/w mod p
K’ := h(S1]|S2||---11Sn)
if proofpk,, # h(K'||g), abort
U = 1/KI{UK}
fOI‘ QI in { QJ Ql: Q27 }
{ confirm, Q', {Q'}v } — Servers}

Servers:
for each received { confirm, @', {Q'}v }
for any {A,Q,Vt} in L; where Q = Q'
verify {Q'}u as signature of @ with V
if the signature is valid,
remove {A,Q,V t} from L;

Periodically, perhaps once a minute, each B; scans its list L; for bad entries
{A4,Q,V t} where (CurrentTime - t) is too large to be acceptable. When a bad
entry is found, the entry is removed from the list, and a bad access attempt
event is triggered for user A.

Note that as an optimization, Alice need only compute and send a single
signature to authenticate a list of all recent () values to all servers.

4.3 Performance Improvement

There are several factors to consider when comparing the FK1 protocol to ours,
including the cost of the group arithmetic for the basic blinding functions, the
cost of related verification functions, and the cost, benefits, and risks of using a
server-authenticated channel to each server.

Cost of Blinding Operations. With security factors j = 80 and k& = 1024, the
new protocol provides significantly higher performance than the FK1 protocol.
Using ¢ = (p—1)/2, each FK1 server must perform one 1023-bit exponentiation
and the client must perform two.

When using p = 2rq + 1 as shown our method, we’re using a subgroup of
order 2160 > g > 2159 1In the latter case, two client and one server computations
are reduced to roughly 1/6 of the former amounts. (Note: Given the differing
ways to evaluate equivalent symmetric and asymmetric security parameters, your
mileage may vary.)

However, the client benefit is not realized when Alice must perform the 864-
bit exponentiation in gp := h(P)?". Yet, some of the benefit can be reclaimed
in alternate constructions of gp, such as the one described below.

This comparison so far ignores any added savings that can be achieved by
eliminating the setup of the server-authenticated channel. However, by eliminat-
ing all server-authentication, the savings may come at the expense of allowing
a little online guessing by false servers, and perhaps revealing the identity A to
eavesdroppers.

Alternate Construction of gp. We now suggest the alternate construction
gp = g1 -gg (P)mod ¢ mpig yses fixed parameters g and g which are two random
elements of order ¢ with no known exponential relationship to each other. One
possibility for creating universally acceptable values for g; and g5 is to use a hash
function as a random oracle, as in g; := h("gl")?" mod p. A similar technique
is used to create acceptable parameters in DSA [9].

With the same security parameters, the alternate construction requires three
160-bit exponentiations for the client, and one for the server, which reduces the
client cost by 53% and the server cost by 84%, when compared to FK1.

Cost of Authentication Function. Our method above requires a digital sig-
nature for the user to prove authenticity of her set of blinded passwords. For-
tunately, client signature generation can be done once to create a message that
encompasses one or more recently sent password requests for all servers, and
server signature verification is fast when using RSA.

Furthermore, to eliminate the cost of a public key signing operation on the
client, Alice might instead “sign” her set of blinded passwords with a keyed
message authentication code, using a shared secret key (K; = h(Kp,||7)) that
she enrolls with B;. In this case she enrolls distinct keys and constructs distinct
signatures for each server.

4.4 Arguments for Security

Although a full theoretical treatment is beyond the scope of this paper, we
present a few simple arguments for the security of this method.

FEach key share is a strong secret. The crucial data for each share is stored only
in the secret y; value on a hopefully secure credentials server, and it is released
only in the exponent of a modified Diffie-Hellman exchange. This calculation is
modulo a prime of the form p = 2rq + 1, which severely limits the information
that an attacker can obtain about y;. All that can be determined by a probing
attack is whether y; has factors in common with 2rq¢. But since y; is random and
all factors other than 2 are huge, the probability is vanishingly small. Thus, as
noted in [11], the only information that can be determined is the low bit of y;.

Alice leaks zero information about P in her blinded request messages, since
for any revealed value there’s an equal probability that it was generated by any
given P. (This is discussed further in Section 4.5.) And even the presence of

additional data, like the P®Y values, does not help the attacker determine P,
since the y values are unrelated to P by any data known to an attacker.

The chance of information leakage from Alice in her confirm messages to an
enemy in control of the channel is negligible, since she will abort before releasing
any useful information if she receives any invalid reply from a server. Due to the
combining hash function, if one share of the master key is incorrect, then with
overwhelming probability the combined key will be incorrect. And if the master
key is incorrect, then by the same reason the verifier hash value will be incorrect.
So if they do match, Alice can be sure that her master key is correct.

In Section 4.1 we stated that the communications channel does not have to
guarantee the integrity of the Ux and proofpk,, values sent by a server. To
see why, consider an evil party that fabricates these values and sends them to
Alice. At worst, this enemy can either validate a single guess for the password in
each run, or perform a denial of service attack. If the client is designed to be no
more tolerant of bad guesses than the server 2, then these attacks are roughly
equivalent to the possible attacks in the secure channels model. In both models
an enemy can make a limited small number of on-line guesses, in at least one
direction, and can cause denial of service by modifying or deleting messages.

Both the h(P)?" function and the alternate construction in Section 4.3 guar-
antee an element of order ¢, and protect against the password-in-exponent and
short-exponent problems noted in [19] and [11].

4.5 Short Exponents

An alternate approach to reducing computation is to use shorter exponents.
For example, in a group with p = 2¢ + 1, with a 1023-bit ¢, one might use
exponents in the range [1,21%° — 1]. The use of short exponents in Diffie-Hellman
was discussed in [25]. When using short exponents, the Pollard lambda method
is the most efficient known way to compute a random exponent x of g* for
some known fixed base g. A lambda discrete log computation requires about
z'/? operations. Yet there are no guarantees that a simpler solution will not be
found.

Consider an aborted protocol, where the user simply reveals a series of
blinded passwords, and no other information is available to an attacker. When
using a full-size evenly distributed random exponent z €g [1,0(G4)], the P*
values reveal zero information about P.

But when using a short exponent z €g [1,m], m < g, the security may
require an added assumption of computational intractability, and it is desirable
to remove unnecessary assumptions. Whether this assumption is significant is
an open question.

So, with the (perhaps unwarranted) concern that short exponents introduce
an unwanted assumption, our recommended approach to reducing computation

% Fortunately, people tend to have a low tolerance for login failures, and are likely to
complain to systems administrators about recurring problems. However, the client
must be designed to insure that at least the user is made aware of all failures.

is to use a subgroup of prime order significantly smaller than the modulus. This
approach is also used in DSA.

These methods, when compared to FK1, can provide at least an equivalent
level of security against discrete log attack with considerably less computation.

4.6 Flexible Server Location

In our model, we do not presume a pre-authenticated secure channel between the
client and servers, and thus we do not require the user to validate the name of
the server to maintain the security of the password. This frees the user to locate
the server with a rich set of insecure mechanisms, such as those commonly used
on the Internet. These methods include manually typed (or mis-typed) URLs,
insecure DNS protocols, untrustworthy search engines, collections of links from
unknown sources, all of which together provide a robust way to locate the correct
server, but none of which guarantees against the chance of connecting to an
imposter.

The crucial point is that, whether or not SSL is used, the worst threat posed
in this model is one of denial of service — which is always present in the same
form in the pre-authenticated server model. The new benefit of our model is that
the password is never exposed to unconstrained attack, even when the client is
connected to an imposter, by whatever means.

4.7 Trustworthy Clients

As in most related earlier work, we must fundamentally assume that the client
software is trustworthy. Client software has control of the user input/output
devices, and if malicious, could monitor the password during entry and send it
to an enemy, or misuse it for evil purposes.

Note that a client may be deemed trustworthy for short-term transactions,
but not trustworthy to handle long-term secrets. For example, even trustworthy
local storage may be backed-up or inadvertently replicated to a less trustworthy
domain. It may be sufficient that the system merely have the ability to enter
trusted states for specific intervals, and perhaps even guarantee a trusted path
between the keyboard and the secure application, while at the same time not be
able to guarantee long-term security for persistent storage.

The trustworthy client requirement applies equally to our method, to FK1,
and even to non-password systems where user-to-server authentication is me-
diated by a client machine or device. The evil misuse threat applies to many
smart card systems, where client software presents transactions to be signed by
the card.

We further note that web browsers may permit the client to use software
applications that are loaded and run on-demand from servers to which the user
connects. Such practice raises further important issues beyond the scope of this

paper.

5 Applications

This protocol is useful for authenticating roaming users and retrieving private
keys for use in network applications. It is especially applicable when the client
has no capability for persistent storage of keys, or if one merely believes that a
set of credentials servers is a safer long-term repository for keys than the disk
on a poorly managed workstation.

Yet, the method can also enhance non-roaming systems. When client storage
is present, and if it is deemed to offer at least some minimum level of protection,
splitting shares of the user’s master key among both local and secure remote
storage may be desirable.

6 Conclusion

We’ve presented what appears to be the first description of a password-only
multi-server roaming protocol. It retrieves sensitive user data from multiple re-
lated credentials servers, without exposing the password to off-line guessing un-
less all servers are compromised, and without relying on prior secure channels
to provide this protection.

The method improves upon earlier methods in being able to perform these
secure transactions with less computation, using either ordinary or elliptic curve
groups, with simpler client configurations, and fewer requirements for proper
user behavior.

The protocol is useful for authenticating roaming and non-roaming users
and retrieving private keys for use in network applications — or more generally,
wherever passwords are used in network computing.

The author thanks the anonymous reviewers for their helpful comments.

References

1. S. Bellovin and M. Merritt, Encrypted Key Exchange: Password-based Protocols
Secure against Dictionary Attacks, Proc. IEEE Symposium on Research in Security
and Privacy, May 1992.

2. V. Boyko, P. MacKenzie and S. Patel, Provably Secure Password Authenticated
Key Exchange Using Diffie-Hellman, Advances in Cryptology - EUROCRYPT 2000,
Lecture Notes in Computer Science, vol. 1807, Springer-Verlag, May 2000.

3. M. Bellare, D. Pointcheval and P. Rogaway, Authenticated Key Exchange Secure
Against Dictionary Attack, Advances in Cryptology - EUROCRYPT 2000, Lecture
Notes in Computer Science, vol. 1807, pp. 139-155, Springer-Verlag, May 2000.

4. M. K. Boyarsky, Public-Key Cryptography and Password Protocols: The Multi-
User Case, Proc. 6th ACM Conference on Computer and Communications Security,
November 1-4, 1999, Singapore.

5. D. Chaum, Security without Identification: Transaction Systems to Make Big
Brother Obsolete, Communications of the ACM, 28 (1985), 1030-1044.

6. Cohen, F., 50 Ways to Attack Your World Wide Web System, Computer Security
Institute Annual Conference, Washington, DC, October 1995.

7. T. Dierks and C. Allen, The TLS Protocol Version 1.0, IETF RFC 2246,
http://www.ietf.org/rfc/rfc2246.txt, Internet Activities Board, January 1999.

8. E. Felton, D. Balfanz, D. Dean and D. Wallach, Web Spoofing: An Internet Con
Game, 20th National Information Systems Security Conference, Oct. 7-10, 1997,
Baltimore, Maryland, http://www.cs.princeton.edu/sip/pub/spoofing.html.

9. FIPS 186, Digital Signature Standard (DSS), NIST, 19 May 1994.

10. FIPS 180-1, Secure Hash Standard (SHA), NIST, 11 July 1994.

11. W. Ford and B. Kaliski, Server-Assisted Generatlon of a Strong Secret from a Pass-
word, Proc. 9t" International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, IEEE, June 14-16, 2000.

12. A. Frier, P. Karlton, and P. Kocher, The SSL 3.0 Protocol, Netscape Communica-
tions Corp., Nov 18, 1996.

13. L. Gong, T.M.A. Lomas, R.M. Needham, and J.H. Saltzer, Protecting Poorly Cho-
sen Secrets from Guessing Attacks, IEEE Journal on Selected Areas in Communi-
cations, vol.11, no.5, June 1993, pp. 648-656.

14. L. Gong, Increasing Availability and Security of an Authentication Service, IEEE
Journal on Selected Areas in Communications, vol. 11, no. 5, June 1993, pp. 657-662.

15. L. Gong, Optimal Authentication Protocols Resistant to Password Guessing At-
tacks, Proc. 8th IEEE Computer Security Foundations Workshop, Ireland, June 13,
1995, pp. 24-29.

16. S. Halevi and H. Krawczyk, Public-Key Cryptography and Password Protocols,
Proc. Fifth ACM Conference on Computer and Communications Security, 1998.
17. IEEE Std 1363-2000, IEEE Standard Specifications for Public-Key Cryptography,

IEEE, August 29, 2000, A.11.1, p. 131.

18. D. Jablon, Strong Password-Only Authenticated Key Ex-
change, ACM Computer Communications Review, October 1996,
http://www.IntegritySciences.com/links.html#Jab96.

19. D. Jablon, Extended Password Protocols Immune to Dictionary Attack,
Proc. 6 Workshops on Enabling Technologies: Infrastructure for Col-
laborative Enterprises, Enterprise Security Workshop, IEEE, June 1997,
http://www.IntegritySciences.com/links.html#Jab97.

20. C. Kaufman, R. Perlman, M. Speciner, Network Security: Private Communication
in a Public World, Prentice-Hall, 1995, Chapter 8: Authentication of People, p. 205,
3rd paragraph.

21. S. Lucks, Open Key Exchange: How to Defeat Dictionary Attacks Without En-
crypting Public Keys, The Security Protocol Workshop ’97, Ecole Normale Su-
perieure, April 7-9, 1997.

22. P. MacKenzie and R. Swaminathan, Secure Network Authentication
with Password Identification, submission to IEEE P1363 working group,
http://grouper.ieee.org/groups/1363/, July 30, 1999.

23. R. Perlman and C. Kaufman, Secure Password-Based Protocol for Downloading
a Private Key, Proc. 1999 Network and Distributed System Security Symposium,
Internet Society, January 1999.

24. J. Tardo and K. Alagappan, SPX: Global Authentication Using Public Key Cer-
tificates, Proc. 1991 IEEE Computer Society Symposium on Security and Privacy,
1991, pp. 232-244.

25. P. C. van Oorschot, M. J. Wiener, On Diffie-Hellman Key Agreement with Short
Exponents, Proceedings of Eurocrypt 96, Springer-Verlag, May 1996.

26. T. Wu, The Secure Remote Password Protocol, Proc. 1998 Network and Dis-
tributed System Security Symposium, Internet Society, January 1998, pp. 97-111.

